Mathematics Aligned Standards of Learning Curriculum Framework GRADE 8

8M-NSCE1 The student will

a) compose and decompose numbers to three digits.

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS	
- Expression is a word used to designate any symbolic mathematical phrase that may contain numbers and/or variables. Expressions do not contain equal or inequality signs. - The set of rational numbers includes the set of all numbers that can be expressed as fractions in the form $\frac{a}{b}$ where a and b are integers and b does not equal zero (e.g., $\sqrt{25}, \frac{1}{4}-2.3,75 \%$, $4 . \overline{59}$). - A rational number is any number that can be written in fraction form. - A numerical expression contains only numbers and the operations on those numbers. - Expressions are simplified using the order of operations and the properties for operations with real numbers, i.e., associative, commutative, and distributive and inverse properties. - The order of operations, a mathematical convention, is as follows: Complete all operations within grouping symbols*. If there are grouping symbols within other grouping symbols (embedded), do the innermost operation first. Evaluate all exponential expressions. Multiply and/or divide in order from left to right. Add and/or subtract in order from left to right. *Parentheses (), brackets [], braces \{ \}, the absolute value $\mid \\|$, division/fraction bar - , and the square root	- What is the role of the order of operations when simplifying numerical expressions? The order of operations prescribes the order to use to simplify a numerical expression. - How does the different ways rational numbers can be represented help us compare and order rational numbers? Numbers can be represented as decimals, fractions, percents, and in scientific notation. It is often useful to convert numbers to be compared and/or ordered to one representation (e.g., fractions, decimals or percents). - What is a rational number? A rational number is any number that can be written in fraction form. - When are numbers written in scientific notation? Scientific notation is used to represent very large and very small numbers.	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to - Simplify numerical expressions containing: 1) exponents (where the base is a rational number and the exponent is a positive whole number); 2) fractions, decimals, integers and square roots of perfect squares; and 3) grouping symbols (no more than 2 embedded grouping symbols). Order of operations and properties of operations with real numbers should be used. - Compare and order no more than five fractions, decimals, percents, and numbers written in scientific notation using positive and negative exponents. Ordering may be in ascending or descending order.	

8M-NSCE1 The student will

a) compose and decompose numbers to three digits.

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
symbol $\sqrt{ }$ should be treated as grouping symbols. - A power of a number represents repeated multiplication of the number. For example, ($5)^{4}$ means $(-5) \cdot(-5) \cdot(-5) \cdot(-5)$. The base is the number that is multiplied, and the exponent represents the number of times the base is used as a factor. In this example, (-5) is the base, and 4 is the exponent. The product is 625 . Notice that the base appears inside the grouping symbols. The meaning changes with the removal of the grouping symbols. For example, -5^{4} means $5 \cdot 5 \cdot 5 \cdot 5$ negated which results in a product of -625 . The expression $-(5)^{4}$ means to take the opposite of $5 \cdot 5 \cdot 5 \cdot 5$ which is -625 . Students should be exposed to all three representations. - Scientific notation is used to represent very large or very small numbers. - A number written in scientific notation is the product of two factors: a decimal greater than or equal to one but less than 10 multiplied by a power of 10 (e.g., $3.1 \times 10^{5}=310,000$ and $3.1 \times$ $10^{-5}=0.000031$). - Any real number raised to the zero power is 1 . The only exception to this rule is zero itself. Zero raised to the zero power is undefined. - All state approved scientific calculators use algebraic logic (follow the order of operations).		

8M-NSCE2 The student will

a) subtract fractions with like denominators (halves, fourths, and tenths) with minuends less than or equal to one.

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- The set of real numbers includes natural numbers, counting numbers, whole numbers, integers, rational and irrational numbers. - The set of natural numbers is the set of counting numbers $\{1,2,3,4, \ldots\}$. - The set of whole numbers includes the set of all the natural numbers or counting numbers and zero $\{0,1,2,3 \ldots\}$. - The set of integers includes the set of whole numbers and their opposites $\{\ldots-2,-1,0,1$, $2 \ldots\}$. - The set of rational numbers includes the set of all numbers that can be expressed as fractions in the form $\frac{a}{b}$ where a and b are integers and b does not equal zero (e.g., $\sqrt{25}, \frac{1}{4},-2.3,75 \%$, $4 . \overline{59}$) - The set of irrational numbers is the set of all nonrepeating, nonterminating decimals. An irrational number cannot be written in fraction form \{e.g., $\pi, \sqrt{2}, 1.232332333 \ldots\}$.	- How are the real numbers related? Some numbers can appear in more than one subset, e.g., 4 is an integer, a whole number, a counting or natural number and a rational number. The attributes of one subset can be contained in whole or in part in another subset.	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to - Describe orally and in writing the relationships among the sets of natural or counting numbers, whole numbers, integers, rational numbers, irrational numbers, and real numbers. - Illustrate the relationships among the subsets of the real number system by using graphic organizers such as Venn diagrams. Subsets include rational numbers, irrational numbers, integers, whole numbers, and natural or counting numbers. - Identify the subsets of the real number system to which a given number belongs. - Determine whether a given number is a member of a particular subset of the real number system, and explain why. - Describe each subset of the set of real numbers and include examples and nonexamples. - Recognize that the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational. ${ }^{\dagger}$

8M-NSCE3 The student will

a) represent different forms and values of decimal numbers using fractions with numerators that are multiples of five and a denominator of 100 .

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- A perfect square is a whole number whose square root is an integer (e.g., The square root of 25 is 5 and -5 ; thus, 25 is a perfect square). - The square root of a number is any number which when multiplied by itself equals the number. - Whole numbers have both positive and negative roots. - Any whole number other than a perfect square has a square root that lies between two consecutive whole numbers. - The square root of a whole number that is not a perfect square is an irrational number (e.g., $\sqrt{2}$ is an irrational number). An irrational number cannot be expressed exactly as a ratio. - Students can use grid paper and estimation to determine what is needed to build a perfect square.	- How does the area of a square relate to the square of a number? The area determines the perfect square number. If it is not a perfect square, the area provides a means for estimation. - Why do numbers have both positive and negative roots? The square root of a number is any number which when multiplied by itself equals the number. A product, when multiplying two positive factors, is always the same as the product when multiplying their opposites (e.g., $7 \cdot 7=49$ and $-7 \cdot-7=49$).	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to - Identify the perfect squares from 0 to 400 . - Identify the two consecutive whole numbers between which the square root of a given whole number from 0 to 400 lies (e.g., $\sqrt{57}$ lies between 7 and 8 since $7^{2}=49$ and $8^{2}=64$). - Define a perfect square. - Find the positive or positive and negative square roots of a given whole number from 0 to 400 . (Use the symbol $\sqrt{ }$ to ask for the positive root and $-\sqrt{ }$ when asking for the negative root.)

8M-MG1 The student will

a) compare measures of angles to a right angle (greater than, less than, or equal to).

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- Vertical angles are (all nonadjacent angles) formed by two intersecting lines. Vertical angles are congruent and share a common vertex. - Complementary angles are any two angles such that the sum of their measures is 90°. - Supplementary angles are any two angles such that the sum of their measures is 180°. - Reflex angles measure more than 180°. - Adjacent angles are any two non-overlapping angles that share a common side and a common vertex.	- How are vertical, adjacent, complementary and supplementary angles related? Adjacent angles are any two non-overlapping angles that share a common side and a common vertex. Vertical angles will always be nonadjacent angles. Supplementary and complementary angles may or may not be adjacent.	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to - Measure angles of less than 360° to the nearest degree, using appropriate tools. - Identify and describe the relationships between angles formed by two intersecting lines. - Identify and describe the relationship between pairs of angles that are vertical. - Identify and describe the relationship between pairs of angles that are supplementary. - Identify and describe the relationship between pairs of angles that are complementary. - Identify and describe the relationship between pairs of angles that are adjacent. - Use the relationships among supplementary, complementary, vertical, and adjacent angles to solve practical problems. ${ }^{\dagger}$

8M-MG2 The student will

a) identify volume of common measures (cups, pints, quarts, gallons, etc.).

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE
- A polyhedron is a solid figure whose faces are all polygons. - A pyramid is a polyhedron with a base that is a polygon and other faces that are triangles with a common vertex. - The area of the base of a pyramid is the area of the polygon which is the base. - The total surface area of a pyramid is the sum of the areas of the triangular faces and the area of the base. - The volume of a pyramid is $\frac{1}{3} B h$, where B is the area of the base and h is the height. - The area of the base of a circular cone is πr^{2}. - The surface area of a right circular cone is $\pi r^{2}+$ $\pi r l$, where l represents the slant height of the cone. - The volume of a cone is $\frac{1}{3} \pi r^{2} h$, where h is the height and πr^{2} is the area of the base. - The surface area of a right circular cylinder is $2 \pi r^{2}+2 \pi r h$. - The volume of a cylinder is the area of the base of the cylinder multiplied by the height.	- How does the volume of a three-dimensional figure differ from its surface area? Volume is the amount a container holds. Surface area of a figure is the sum of the area on surfaces of the figure. - How are the formulas for the volume of prisms and cylinders similar? For both formulas you are finding the area of the base and multiplying that by the height. - How are the formulas for the volume of cones and pyramids similar? For cones you are finding $\frac{1}{3}$ of the volume of the cylinder with the same size base and height. For pyramids you are finding $\frac{1}{3}$ of the volume of the prism with the same size base and height.	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to - Distinguish between situations that are applications of surface area and those that are applications of volume. - Investigate and compute the surface area of a square or triangular pyramid by finding the sum of the areas of the triangular faces and the base using concrete objects, nets, diagrams and formulas. - Investigate and compute the surface area of a cone by calculating the sum of the areas of the side and the base, using concrete objects, nets, diagrams and formulas. - Investigate and compute the surface area of a right cylinder using concrete objects, nets, diagrams and formulas. - Investigate and compute the surface area of a rectangular prism using concrete objects, nets, diagrams and formulas. - Investigate and compute the volume of prisms, cylinders, cones, and pyramids, using concrete objects, nets, diagrams, and formulas. - Solve practical problems involving volume and surface area of prisms, cylinders, cones, and pyramids. - Compare and contrast the volume and surface area of a prism with a given set of attributes with the volume of a prism where one of the attributes has been increased by a factor of $2,3,5$ or 10 . - Describe the two-dimensional figures that result from slicing threedimensional figures parallel to the base (e.g., as in plane sections of right rectangular prisms and right rectangular pyramids). ${ }^{\dagger}$

- The surface area of a rectangular prism is the sum of the areas of the six faces.

8M-MG2 The student will

a) identify volume of common measures (cups, pints, quarts, gallons, etc.).

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- The volume of a rectangular prism is calculated by multiplying the length, width and height of the prism. - A prism is a solid figure that has a congruent pair of parallel bases and faces that are parallelograms. The surface area of a prism is the sum of the areas of the faces and bases. - When one attribute of a prism is changed through multiplication or division the volume increases by the same factor that the attribute increased by. For example, if a prism has a volume of $2 \times 3 \times 4$, the volume is 24 . However, if one of the attributes are doubled, the volume doubles. - The volume of a prism is $B h$, where B is the area of the base and h is the height of the prism. - Nets are two-dimensional representations that can be folded into three-dimensional figures.	- In general what effect does changing one attribute of a prism by a scale factor have on the volume of the prism? When you increase or decrease the length, width or height of a prism by a factor greater than 1 , the volume of the prism is also increased by that factor.	

8M-MG3 The student will

a) identify similarity and congruence (same) in objects and shapes containing angles without translations;
b) identify similar shapes with and without rotation.

UNDERSTANDING THE STANDARD
(Background Information for Instructor Use Onlv)

- A rotation of a geometric figure is a clockwise or counterclockwise turn of the figure around a fixed point. The point may or may not be on the figure. The fixed point is called the center of rotation.
- A reflection of a geometric figure moves all of the points of the figure across an axis. Each point on the reflected figure is the same distance from the axis as the corresponding point in the original figure.
- A translation of a geometric figure moves all the points on the figure the same distance in the same direction.
- A dilation of a geometric figure is a transformation that changes the size of a figure by a scale factor to create a similar figure.
- Practical applications may include, but are not limited to, the following:
- A rotation of the hour hand of a clock from 2:00 to 3:00 shows a turn of 30° clockwise;
- A reflection of a boat in water shows an image of the boat flipped upside down with the water line being the line of reflection;
- A translation of a figure on a wallpaper pattern shows the same figure slid the same distance in the same direction; and
- A dilation of a model airplane is the production model of the airplane.
- The image of a polygon is the resulting polygon after a transformation. The preimage is the original polygon before the transformation.

ESSENTIAL UNDERSTANDINGS

- How does the transformation of a figure on the coordinate grid affect the congruency, orientation, location and symmetry of an image? Translations, rotations and reflections maintain congruence between the preimage and image but change location. Dilations by a scale factor other than 1 produce an image that is not congruent to the pre-image but is similar. Rotations and reflections change the orientation of the image.

8M-MG3 The student will
a) identify similarity and congruence (same) in objects and shapes containing angles without translations;
b) identify similar shapes with and without rotation.

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
A transformation of preimage point A can be denoted as the image A^{\prime} (read as "A prime").		

8M-PSPFA1 The student will

a) determine the values or rule of a function using a graph or a table;
b) describe how a graph represents a relationship between two quantities.

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- A relation is any set of ordered pairs. For each first member, there may be many second members. - A function is a relation in which there is one and only one second member for each first member. - As a table of values, a function has a unique	- What is the relationship among tables, graphs, words, and rules in modeling a given situation? Any given relationship can be represented by all four.	The student will use problem solving, mathematical communication, mathematical reasoning, connections and representation to - Graph in a coordinate plane ordered pairs that represent a relation. - Describe and represent relations and functions, using tables, graphs, words, and rules. Given one representation, students will be able to represent the relation in another form. - Relate and compare different representations for the same relation.

- As a graph, a function is any curve (including straight lines) such that any vertical line would pass through the curve only once.
- Some relations are functions; all functions are relations.
- Graphs of functions can be discrete or continuous.
- In a discrete function graph there are separate, distinct points. You would not use a line to connect these points on a graph. The points between the plotted points have no meaning and cannot be interpreted.
- In a graph of continuous function every point in the domain can be interpreted therefore it is possible to connect the points on the graph with a continuous line as every point on the line answers the original question being asked.
- Functions can be represented as tables, graphs, equations, physical models, or in words.

8M-PSPFA2 The student will

a) solve algebraic expressions using simple addition and subtraction..

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- A multistep equation is an equation that requires more than one different mathematical operation to solve. - A two-step inequality is defined as an inequality that requires the use of two different operations to solve (e.g., $3 x-4>9$). - In an equation, the equal sign indicates that the value on the left is the same as the value on the right. - To maintain equality, an operation that is performed on one side of an equation must be performed on the other side. - When both expressions of an inequality are multiplied or divided by a negative number, the inequality sign reverses. - The commutative property for addition states that changing the order of the addends does not change the sum (e.g., $5+4=4+5$). - The commutative property for multiplication states that changing the order of the factors does not change the product (e.g., $5 \cdot 4=4 \cdot 5$). - The associative property of addition states that regrouping the addends does not change the sum [e.g., $5+(4+3)=(5+4)+3$]. - The associative property of multiplication states that regrouping the factors does not change the product [e.g., $5 \cdot(4 \cdot 3)=(5 \cdot 4) \cdot 3]$.	- How does the solution to an equation differ from the solution to an inequality? While a linear equation has only one replacement value for the variable that makes the equation true, an inequality can have more than one.	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to - Solve two- to four-step linear equations in one variable using concrete materials, pictorial representations, and paper and pencil illustrating the steps performed. - Solve two-step inequalities in one variable by showing the steps and using algebraic sentences. - Graph solutions to two-step linear inequalities on a number line. - Identify properties of operations used to solve an equation from among: - the commutative properties of addition and multiplication; - the associative properties of addition and multiplication; - the distributive property; - the identity properties of addition and multiplication; - the zero property of multiplication; - the additive inverse property; and - the multiplicative inverse property.

8M-PSPFA2 The student will

a) solve algebraic expressions using simple addition and subtraction.

UNDERSTANDING THE STA (Background Information for Instru Onlv)
-Subtraction and division are neither commutative nor associative.
-The distributive property states that the of a number and the sum (or differenc $)$ other numbers equals the sum (or diff the products of the number and each number [e.g., $5 \cdot(3+7)=(5 \cdot 3)+(5 \cdot 7)$, or $5 \cdot(3-7)=(5 \cdot 3)-(5 \cdot 7)]$.

- Identity elements are numbers that combine with other numbers without changing the other numbers. The additive identity is zero (0). The multiplicative identity is one (1). There are no identity elements for subtraction and division.
- The additive identity property states that the sum of any real number and zero is equal to the given real number (e.g., $5+0=5$).
- The multiplicative identity property states that the product of any real number and one is equal to the given real number (e.g., $8 \cdot 1=8$).

1. Inverses are numbers that combine with other numbers and result in identity elements

$$
\text { [e.g., } \left.5+(-5)=0 ; \frac{1}{5} \cdot 5=1\right] .
$$

- The additive inverse property states that the sum of a number and its additive inverse always equals zero [e.g., $5+(-5)=0$].

8M-PSPFA2 The student will

a) solve algebraic expressions using simple addition and subtraction.

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
-The multiplicative inverse property states that the product of a number and its multiplicative inverse (or reciprocal) always equals one (e.g., $4 \cdot \frac{1}{4}=1$).		
-Zero has no multiplicative inverse. -The multiplicative property of zero states that the product of any real number and zero is zero. -Division by zero is not a possible arithmetic operation. -Combining like terms means to combine terms that have the same variable and the same exponent (e.g., $8 x+11-3 x$ can be $5 x+11$ by combining the like terms of $8 x$ and $-3 x$). \quad		

8M-PSPFA3 The student will

a) graph a simple ratio using the x and y axis points when given the ratio in standard form (2:1) and convert $2 / 1$.

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Onlv)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- A linear equation is an equation in two variables whose graph is a straight line, a type of continuous function (see SOL 8.14). - A linear equation represents a situation with a constant rate. For example, when driving at a rate of 35 mph , the distance increases as the time increases, but the rate of speed remains the same. - Graphing a linear equation requires determining a table of ordered pairs by substituting into the equation values for one variable and solving for the other variable, plotting the ordered pairs in the coordinate plane, and connecting the points to form a straight line. - The axes of a coordinate plane are generally labeled x and y; however, any letters may be used that are appropriate for the function.	- What types of real life situations can be represented with linear equations? Any situation with a constant rate can be represented by a linear equation.	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to - Construct a table of ordered pairs by substituting values for x in a linear equation to find values for y. - Plot in the coordinate plane ordered pairs (x, y) from a table. - Connect the ordered pairs to form a straight line (a continuous function). - Interpret the unit rate of the proportional relationship graphed as the slope of the graph, and compare two different proportional relationships represented in different ways. ${ }^{\dagger}$

8M-PSPFA4 The student will

b) given a function table, identify the missing number.

UNDERSTANDING THE STANDARD (Background Information for Instructor Use Only)	ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- The domain is the set of all the input values for the independent variable in a given situation. - The range is the set of all the output values for the dependent variable in a given situation. - The independent variable is the input value. - The dependent variable depends on the independent variable and is the output value. - Below is a table of values for finding the circumference of circles, $C=\pi d$, where the value of π is approximated as 3.14. - The independent variable, or input, is the diameter of the circle. The values for the diameter make up the domain. - The dependent variable, or output, is the circumference of the circle. The set of values for the circumference makes up the range.	- What are the similarities and differences among the terms domain, range, independent variable and dependent variable? The value of the dependent variable changes as the independent variable changes. The domain is the set of all input values for the independent variable. The range is the set of all possible values for the dependent variable.	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to - Apply the following algebraic terms appropriately: domain, range, independent variable, and dependent variable. - Identify examples of domain, range, independent variable, and dependent variable. - Determine the domain of a function. - Determine the range of a function. - Determine the independent variable of a relationship. - Determine the dependent variable of a relationship.

