Mathematics Aligned Standards of Learning Curriculum Framework HIGH SCHOOL

HSM-EO1 The student will

a) match an algebraic expression involving one operation to represent a given word expression with an illustration.

ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- Algebra is a tool for reasoning about quantitative situations so that relationships become apparent. - Algebra is a tool for describing and representing patterns and relationships. - Mathematical modeling involves creating algebraic representations of quantitative realworld situations. - The numerical value of an expression is dependent upon the values of the replacement set for the variables. - There are a variety of ways to compute the value of a numerical expression and evaluate an algebraic expression. - The operations and the magnitude of the numbers in an expression impact the choice of an appropriate computational technique. - An appropriate computational technique could be mental mathematics, calculator, or paper and pencil.	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to - Translate verbal quantitative situations into algebraic expressions and vice versa. - Model real-world situations with algebraic expressions in a variety of representations (concrete, pictorial, symbolic, verbal). - Evaluate algebraic expressions for a given replacement set to include rational numbers. - Evaluate expressions that contain absolute value, square roots, and cube roots.

HSM-EO2 The student will
a) solve division problems with remainders using concrete objects;
b) solve simple on-step equations (multiplication and division) with a variable.

ESSENTIAL UNDERSTANDINGS

- The laws of exponents can be investigated using inductive reasoning.
- A relationship exists between the laws of exponents and scientific notation.
- Operations with polynomials can be represented concretely, pictorially, and symbolically.
- Polynomial expressions can be used to model realworld situations.
- The distributive property is the unifying concept for polynomial operations.
- Factoring reverses polynomial multiplication.
- Some polynomials are prime polynomials and cannot be factored over the set of real numbers.
- Polynomial expressions can be used to define functions and these functions can be represented graphically.
- There is a relationship between the factors of any polynomial and the x-intercepts of the graph of its related function.

ESSENTIAL KNOWLEDGE AND SKILLS

The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to

- Simplify monomial expressions and ratios of monomial expressions in which the exponents are integers, using the laws of exponents.
- Model sums, differences, products, and quotients of polynomials with concrete objects and their related pictorial representations.
- Relate concrete and pictorial manipulations that model polynomial operations to their corresponding symbolic representations.
- Find sums and differences of polynomials.
- Find products of polynomials. The factors will have no more than five total terms (i.e. $(4 x+2)(3 x+5)$ represents four terms and $(x+1)\left(2 x^{2}+x+3\right)$ represents five terms).
- Find the quotient of polynomials, using a monomial or binomial divisor, or a completely factored divisor.
- Factor completely first- and second-degree polynomials with integral coefficients.
- Identify prime polynomials.
- Use the x-intercepts from the graphical representation of the polynomial to determine and confirm its factors.

HSM-EI1

The student will

a) solve an algebraic expression using subtraction.

ESSENTIAL UNDERSTANDINGS
- A solution to an equation is the value or set of values that
can be substituted to make the equation true.

- The solution of an equation in one variable can be found by graphing the expression on each side of the equation separately and finding the x-coordinate of the point of intersection.
- Real-world problems can be interpreted, represented, and solved using linear and quadratic equations.
- The process of solving linear and quadratic equations can be modeled in a variety of ways, using concrete, pictorial, and symbolic representations.
- Properties of real numbers and properties of equality can be used to justify equation solutions and expression simplification.
- The zeros or the x-intercepts of the quadratic function are the real root(s) or solution(s) of the quadratic equation that is formed by setting the given quadratic expression equal to zero.
- A system of linear equations with exactly one solution is characterized by the graphs of two lines whose intersection is a single point, and the coordinates of this point satisfy both equations.

ESSENTIAL KNOWLEDGE AND SKILLS

The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to

- Solve a literal equation (formula) for a specified variable.
- Simplify expressions and solve equations, using the field properties of the real numbers and properties of equality to justify simplification and solution.
- Solve quadratic equations.
- Identify the roots or zeros of a quadratic function over the real number system as the solution(s) to the quadratic equation that is formed by setting the given quadratic expression equal to zero.
- Solve multistep linear equations in one variable.
- Confirm algebraic solutions to linear and quadratic equations, using a graphing calculator.
- Given a system of two linear equations in two variables that has a unique solution, solve the system by substitution or elimination to find the ordered pair which satisfies both equations.
- Given a system of two linear equations in two variables that has a unique solution, solve the system graphically by

HSM-EI1 The student will

a) solve an algebraic expression using subtraction.

| ESSENTIAL UNDERSTANDINGS | ESSENTIAL KNOWLEDGE AND SKILLS |
| :--- | :--- | :--- |

HSM-EI2 The student will
a) solve one-step inequalities.

ESSENTIAL UNDERSTANDINGS	
-	A solution to an inequality is the value or set of values that can be substituted to make the inequality true.
-	Real-world problems can be modeled and solved using linear inequalities.
-	Properties of inequality and order can be used to solve inequalities.
-	Set builder notation may be used to represent solution sets of inequalities.

ESSENTIAL KNOWLEDGE AND SKILLS

The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to

- Solve multistep linear inequalities in one variable.
- Justify steps used in solving inequalities, using axioms of inequality and properties of order that are valid for the set of real numbers.
- Solve real-world problems involving inequalities.
- Solve systems of linear inequalities algebraically and graphically.

HSM-EI3 The student will

a) determine the two pieces of information that are plotted on a graph of an equation with two variables that form a line when plotted;
b) interpret rate of change (e.g., higher/lower, faster/slower).

ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS

- Changes in slope may be described by dilations or reflections or both.
- Changes in the y-intercept may be described by translations.
- Linear equations can be graphed using slope, x - and y intercepts, and/or transformations of the parent function.
- The slope of a line represents a constant rate of change in the dependent variable when the independent variable changes by a constant amount.
- The equation of a line defines the relationship between two variables.
- The graph of a line represents the set of points that satisfies the equation of a line.
- A line can be represented by its graph or by an equation.
- The graph of the solutions of a linear inequality is a half-plane bounded by the graph of its related linear equation. Points on the boundary are included unless it is a strict inequality.

The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to

- Graph linear equations and inequalities in two variables, including those that arise from a variety of real-world situations.
- Use the parent function $y=x$ and describe transformations defined by changes in the slope or y intercept.
- Find the slope of the line, given the equation of a linear function.
- Find the slope of a line, given the coordinates of two points on the line.
- Find the slope of a line, given the graph of a line.
- Recognize and describe a line with a slope that is positive, negative, zero, or undefined.
- Use transformational graphing to investigate effects of

HSM-EI3 The student will
a) determine the two pieces of information that are plotted on a graph of an equation with two variables that form a line when plotted;
b) interpret rate of change (e.g., higher/lower, faster/slower).

ESSENTIAL UNDERSTANDINGS	
-	Parallel lines have equal slopes.
- The product of the slopes of perpendicular lines is -1 unless one of	
the lines has an undefined slope.	

changes in equation parameters on the graph of the equation.

- Write an equation of a line when given the graph of a line.
- Write an equation of a line when given two points on the line whose coordinates are integers.
- Write an equation of a line when given the slope and a point on the line whose coordinates are integers.
- Write an equation of a vertical line as $x=\mathrm{a}$.
- Write the equation of a horizontal line as $y=c$.

HSM-FS1 The student will

a) use the concept of functions to solve problems;
b) select the appropriate graphical representation (first quadrant) given a situation involving constant rate of change.

ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- A set of data may be characterized by patterns, and those patterns can be represented in multiple ways. - Graphs can be used as visual representations to investigate relationships between quantitative data. - Inductive reasoning may be used to make conjectures about characteristics of function families. - Each element in the domain of a relation is the abscissa of a point of the graph of the relation. - Each element in the range of a relation is the ordinate of a point of the graph of the relation. - A relation is a function if and only if each element in the domain is paired with a unique element of the range. - The values of $f(x)$ are the ordinates of the points of the graph of f. - The object $f(x)$ is the unique object in the range of the function f that is associated with the object x in the domain of f. - For each x in the domain of f, x is a member of the input of the function $f, f(x)$ is a member of the output of f, and the ordered pair $[x, f(x)]$ is a member of f.	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to - Determine whether a relation, represented by a set of ordered pairs, a table, or a graph is a function. - Identify the domain, range, zeros, and intercepts of a function presented algebraically or graphically. - For each x in the domain of f, find $f(x)$. - Represent relations and functions using concrete, verbal, numeric, graphic, and algebraic forms. Given one representation, students will be able to represent the relation in another form. - Detect patterns in data and represent arithmetic and geometric patterns algebraically.

HSM-FS1 The student will

a) use the concept of functions to solve problems;
b) select the appropriate graphical representation (first quadrant) given a situation involving constant rate of change.

| ESSENTIAL UNDERSTANDINGS | ESSENTIAL KNOWLEDGE AND SKILLS |
| :--- | :--- | :--- |
| An object x in the domain of f is an x-intercept or a zero of a
 function f if and only if $f(x)=0$. | |
| Set builder notation may be used to represent domain and range of
 a relation. | |

a) indicate general trends on a graph or chart.

ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS

- Descriptive statistics may include measures of center and dispersion.
- Variance, standard deviation, and mean absolute deviation measure the dispersion of the data.
- The sum of the deviations of data points from the mean of a data set is 0 .
- Standard deviation is expressed in the original units of measurement of the data.
- Standard deviation addresses the dispersion of data about the mean.
- Standard deviation is calculated by taking the square root of the variance.
- The greater the value of the standard deviation, the further the data tend to be dispersed from the mean.
- For a data distribution with outliers, the mean absolute deviation may be a better measure of dispersion than the standard deviation or variance.
- A z-score (standard score) is a measure of position derived from the mean and standard deviation of data.

The student will use problem solving, mathematical communication, mathematical reasoning, connections and representation to

- Analyze descriptive statistics to determine the implications for the real-world situations from which the data derive.
- Given data, including data in a real-world context, calculate and interpret the mean absolute deviation of a data set.
- Given data, including data in a real-world context, calculate variance and standard deviation of a data set and interpret the standard deviation.
- Given data, including data in a real-world context, calculate and interpret z -scores for a data set.
- Explain ways in which standard deviation addresses dispersion by examining the formula for standard deviation.
- Compare and contrast mean absolute deviation and standard deviation in a real-world context.

HSM-FS2 The student will
a) indicate general trends on a graph or chart.

ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
A z-score derived from a particular data value tells how many standard deviations that data value is above or below the mean of the data set. It is positive if the data value lies above the mean and negative if the data value lies below the mean.	

HSM-FS3 The student will
a) given data, construct a simple graph (table, line, pie, bar, or picture) and answer questions about the data.

ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- Statistical techniques can be used to organize, display, and	
compare sets of data.	
• Box-and-whisker plots can be used to analyze data.	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to

HSM-FS4 The student will
a) model a simple linear function such as $\mathbf{y}=\mathbf{m x}$ to show functions grow by equal factors over equal intervals.

ESSENTIAL UNDERSTANDINGS	ESSENTIAL KNOWLEDGE AND SKILLS
- The graphing calculator can be used to determine the equation of a curve of best fit for a set of data. - The curve of best fit for the relationship among a set of data points can be used to make predictions where appropriate. - Many problems can be solved by using a mathematical model as an interpretation of a real-world situation. The solution must then refer to the original real-world situation. - Considerations such as sample size, randomness, and bias should affect experimental design.	The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to - Write an equation for a curve of best fit, given a set of no more than twenty data points in a table, a graph, or real-world situation. - Make predictions about unknown outcomes, using the equation of the curve of best fit. - Design experiments and collect data to address specific, realworld questions. - Evaluate the reasonableness of a mathematical model of a real-world situation.

